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AdaFold: Adapting Folding Trajectories of Cloths
via Feedback-loop Manipulation

Alberta Longhini1, Michael C. Welle1, Zackory Erickson2, and Danica Kragic1

Abstract—We present AdaFold, a model-based feedback-loop
framework for optimizing folding trajectories. AdaFold extracts
a particle-based representation of cloth from RGB-D images and
feeds back the representation to a model predictive control to re-
plan folding trajectory at every time-step. A key component of
AdaFold that enables feedback-loop manipulation is the use of
semantic descriptors extracted from geometric features. These
descriptors enhance the particle representation of the cloth
to distinguish between ambiguous point clouds of differently
folded cloths. Our experiments demonstrate AdaFold’s ability
to adapt folding trajectories of cloths with varying physical
properties and generalize from simulated training to real-
world execution. Videos can be found on our project website:
https://adafold.github.io

Index Terms—Manipulation Planning; Perception for Grasping
and Manipulation; RGB-D Perception; Semantic Scene Under-
standing

I. INTRODUCTION

GENERALIZING robotic manipulation skills requires
adapting to object variations such as pose, shape, and

physical properties [1]. Feedback-loop manipulation represents
a class of methods to adapt to these variations. The effective-
ness of this class of methods, however, is heavily contingent
upon the robot’s ability to accurately perceive and track the
state of the object throughout the manipulation. Within the
realm of deformable objects, such as cloth, feedback-loop
manipulation remains under-explored due to challenges in state
estimation and dynamics modelling [2], [3].

Recent advances in learning cloth dynamics have led to
model-based methods to plan pick-and-place interactions for
folding and flattening [4], [5]. Despite the progress, these
methods rely on open-loop planning and pre-defined manipu-
lation trajectories due to the practical challenges of estimating
and tracking cloth states during manipulation. A promising
approach to mitigate these challenges is integrating semantic
knowledge based on geometric features [6] into potentially
ambiguous, but easy to track, representations such as point
clouds.
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Fig. 1: AdaFold successfully adapts the folding trajectories of the two
cloths with different physical properties, achieving a better folding
than a predefined triangular trajectory.

We propose AdaFold, a model-based framework for
feedback-loop manipulation of cloth to optimize folding tra-
jectories. AdaFold relies on particle-based state representation
and a learned model of the cloth to optimize the best sequence
of folding actions with model-predictive control (MPC) [8].
To adapt to cloth variations, we perform the manipulation in
a feedback-loop fashion by re-planning the folding trajectory
after every time-step. We further propose to use parameterized
shape models for cloths [7] to extract semantic descriptors of
the upper and the bottom layers of the cloth from RGB images.
To overcome the challenge of tracking the upper and bottom
layers through manipulation, we leverage recent advances in
video tracking [9] to track the respective masks.

We evaluate AdaFold both in simulation and in the real
world using a single-arm manipulator to perform the half-
folding task proposed in [10]. The results confirm the capa-
bility of AdaFold to optimize the folding trajectory of both
simulated and real-world cloths, successfully accounting for
variations in physical properties, demonstrated in Fig.1, initial
position and size of the cloth. We further assess the benefit of
introducing semantic descriptors into the state representation
of the cloth to disambiguate similar point cloud observations
of different folded states. In summary, our contributions are:

• A model-based approach to optimize the folding trajec-
tory in a feedback-loop fashion, which transfers to real-
world cloths with unknown physical properties.

• A method to embed semantic descriptors into a point
cloud representation of cloth by leveraging geometric
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Fig. 2: Overview of AdaFold for feedback-loop manipulation of cloths. Given a set of pick-and-place positions (xpick, xplace), AdaFold
optimizes the best folding action a∗

t at each time-step t. RGB-D observations from different calibrated cameras are used to extract point cloud
representations with semantic descriptors. The semantic descriptors Upper and Bottom are obtained based on geometric features following [7].
The optimal folding action a∗

t is obtained with MPC, which uses the forward and adaptation modules fθ and gψ to evaluate the candidate
trajectories an (light blue) and update the optimal control sequence a∗ (dark blue).

features along pre-trained video tracking techniques.
• An extensive evaluation in both simulation and real-world

environments, considering variations of object properties
such as pose, size and physical properties.

II. RELATED WORK

A. State Representation

Geometric features, such as corners or landmark points, are
effective representations when the cloth lies flat on a surface,
but fail for more crumpled cloth configurations [11]. While
image-based representations alleviate the need for explicit state
estimation and tracking [12], [13], they are sensitive to varia-
tions in color, brightness, and camera perspective. Particle-
based representations, such as graphs, are less sensitive to
visual clues and achieve better generalization to novel cloth
shapes and textures [5], [4]. Yet, tracking graph representations
is still a challenge [14]. Hierarchical and bottom-up represen-
tations [15] have not yet been demonstrated in the context of
cloth manipulation.

Point clouds, on the other hand, demand less computational
effort for perception tasks due to their unstructured nature and
have shown success in assistive dressing tasks [16]. Neverthe-
less, in situations with significant self-occlusions, point cloud
representations become ambiguous as different layers of the
cloth cannot be distinguished based solely on the observable
set of points. While classical computer vision approaches such
as a Harris Corner Detector [17] or a wrinkle-detector [18]
can be used for detecting cloth features, they are typically
not robust to variations of texture, lightning conditions, and
non-static observations. This study tackles these perception
challenges by augmenting point cloud representations with
semantic descriptors, which we derive from RGB observations
through geometric features.

B. Cloth manipulation

Heuristic-based methods for cloth manipulation are viable
approaches for cloth folding and flattening [6], although they

may struggle to generalize across diverse real-world scenar-
ios. Learning-based methods emerge as an alternative when
heuristics fall short, and can be divided into two categories:
model-free and model-based. Model-free learning is a class
of methods that circumvents the challenges in state estimation
and dynamics modeling while also scaling to the real world.
This technique has been successfully used to tackle several
cloth manipulation tasks, such as folding or flattening, by
finding the best sequence of pick-and-place positions [19],
[20], [21], [16], [22]. More recently, [23] proposed a model-
free visual feedback policy to fold cloths in half, successfully
adapting the manipulation trajectory to three real-world cloths.
To address the sample inefficiency of model-free learning [24],
the authors relied on human expert demonstrations. Model-
based techniques, on the other hand, have shown promise
in sample-efficient learning [25], [4], [5]. These approaches
typically employ a top-down camera view to minimize self-
occlusions of the cloth, which, however, restricts visibility
of the cloth’s intermediate states during manipulation. Con-
sequently, this limitation hinders the use of feedback-loop
strategies. In this work, we address this limitation by lever-
aging side camera views to reduce occlusions and propose a
model-based approach specifically designed for feedback-loop
manipulation.

III. PROBLEM FORMULATION

The problem we address is feedback-loop manipulation
of cloth, focusing on optimizing the manipulation trajectory
within a set of pick-and-place positions xpick, xplace ∈ R3.
These positions can be provided by a dedicated planner [26],
[27], [13]. We consider the half-folding task proposed in [10]
as a representative evaluation task, where the goal is to fold
a rectangular cloth in half. The task is performed with the
assumption of quasi-static manipulation, which implies that the
forces and torques acting on the cloth are in static equilibrium
at each time-step. Under these conditions, we decouple the
problem of feedback loop manipulation into cloth perception
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Fig. 3: Cloth labeling: Given the cloth mask at time t = 0, we obtain fold lines based on geometric features following [7]. These fold lines
define the upper and bottom layers based on the pick and place locations.

and trajectory optimization.
Cloth perception: The state of the cloth at time t is described
as a 3D point cloud Pt representing the observable points of
the cloth. The subscript t is omitted when the specific time-step
of the state is not necessary. To disambiguate different cloth
configurations, we introduce semantic information in the point
cloud, allowing us to cluster the points into two sets: PU and
PB , where PU corresponds to the Upper layer points of the
cloth, PB to the Bottom layer, and P = PU ∪ PB .
Trajectory Optimization: Consider the discrete-time dynam-
ics of the observable points of a cloth Pt+1 = f(Pt, xt, at, ξ),
where Pt = PUt ∪PBt , xt is the 3D position of the robot end-
effector (EE), at is the robot action corresponding to a 3-DoF
EE displacement, and ξ are the cloth physical properties such
as stiffness and elasticity. The folding trajectory from time
t = 0 to t = T is defined as:

τ0:T =

P0 P1 . . . PT
x0 x1 . . . xT
a0 a1 . . . aT

 .
The trajectory is optimized by finding a sequence of actions
a∗0:T that minimizes an objective J factorized over per-
timestep costs ct(Pt, xt, at):

a∗0:T = argmin
a0:T

J (τ0:T ) = argmin
a0:T

T∑
t=0

ct,

s.t. x0 = xpick

xT = xplace

Pt+1 = f(Pt, xt, at, ξ)

xt+1 = xt + at

(1)

where T is the control horizon and J (τ0:T ) denotes the
objective value of the trajectory τ0:T . The control input is
updated at every time step in a feedback-loop fashion using
MPC with horizon H . Commonly, the cloth dynamics f and
the physical properties ξ are not precisely known and vary
across different objects [28]. Thus, similarly to [29], we jointly
learn 1) an adaptation module gψ to encode a recent history
of observations into a latent representation zt of the physical
properties and adapt to different objects, 2) an approximate
model fθ of the cloth dynamics conditioned on the latent
representation. These models are respectively parameterized
by θ and ψ. Our framework couples cloth perception with data-
driven trajectory optimization for Adaptive Folding, which we
denote AdaFold.

IV. CLOTH PERCEPTION

The cloth perception consists of processing RGB-D obser-
vations into a semantically labelled point cloud P = PU ∪PB
representing the cloth. Specifically, our method involves two
main steps: 1) extracting at time t = 0 the masks representing
the upper and bottom layers of the cloth using its geometric
features, and 2) tracking these masks with pre-trained video
tracking models.

Given an RGB-D image I0 at time step t = 0, we start
by finding the segmentation mask of the full cloth Mf from
the RGB observation using an object segmentation module.
In this work, we use Grounding-DINO [30] and Segment
Anything (SAM) [31] along with the prompt “cloth”. Given
the binary mask of the cloth, we identify geometric features by
fitting a parameterized polygon to the contour of the cloth as
suggested in [7]. These geometric features, represented by the
cloth corners for the specific case of rectangular cloths, allow
the definition of task-specific folds by specifying a directed
line segment in the plane that partitions the polygon into two
parts, one to be folded over another [6]. To specifically im-
plement half-folding, we project the pick-and-place positions
xpick, xplace onto the image. These positions guide the selection
of the fold segments that separate the cloth mask into upper
Mu and bottom Mb halves, corresponding to the upper and
bottom layers of the fold. Specifically, the upper mask includes
xpick but not xplace, while the bottom mask includes xplace
but not xpick. Following this segmentation, we transform the
masked depth observations into a point cloud Pt using the
camera’s intrinsic matrix and label each point that belongs to
the upper PUand bottom PB layers according to the labels of
the mask. An overview of this labeling process is detailed in
Fig. 3.

While extracting these features is straightforward from flat-
tened configurations, the process becomes more challenging
when the cloth is manipulated, as its shape undergoes defor-
mation. We address this problem by tracking the full Mf and
upper Mu masks of the cloth using video tracker XMEM [9]
at each time-step of the manipulation. Given these two masks,
the bottom mask is easily obtained as Mb =Mf −Mu.

V. TRAJECTORY OPTIMIZATION

To optimize the folding trajectory τ0:T we use sampling-
based MPC over a finite horizon H using a learned model of
the cloth dynamics.

A. Learned Model
To implement fθ and gψ , we extend upon our previous

work [29] with two main differences: 1) we substitute the
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Graph Neural Network (GNN) [32] with PointNet++ [33] to
handle point clouds, 2) we obtain the latent representation zt
in an online fashion by leveraging a recent history of past
observations instead of a predefined exploratory action. As
the forward model architecture is not the main contribution
of this work, we refer the reader to [29] for a more detailed
explanation of this architecture.

We train the model on a dataset D of trajectories collected
in simulation using a multi-step Mean Square Error (MSE)
loss between the model predictions and the ground truth:

L(θ, ψ) = 1

|D|
∑
D

(
1

M

M∑
m=1

1

2
∥P̂t+m − Pt+m∥2

)
, (2)

where P̂t+m = fθ(P̂t+m−1, at, zt), zt = gψ(τt−K:t−1) , K
is the length of the recent history use to encode the latent
representation zt and M represents the number of steps in
the future to be predicted. We use the MSE over the Chamfer
loss as we empirically observed more stable training without
compromising accuracy. Finally, we assume that P̂Bt+1 = PBt
due to the friction between the cloth and the table, preventing
the bottom half from slipping during manipulation. Thus, it is
sufficient for the model to predict only P̂Ut+1.

B. Optimization Process
A scheme of Adafold is proposed in Algorithm 1. Next, we

outline the algorithm, detail the cost function design, describe
a constrained sampling strategy to reduce the action search
space, and introduce a heuristic to ensure candidate trajectories
end at the place position.
Algorithm: At each time t, the perception modules first
process the cloth representation Pt (line 2). Then, N can-
didate open-loop control sequences at:t+H are sampled from
a multivariate Gaussian distribution (line 4). The cost of each
control sequence J n(τt:t+H) is computed using the trajectory
τt:t+H predicted by the model rollout (line 6−10). The optimal
control input is finally updated using the MPPI algorithm
[25], which weights the sampled candidate control sequences
following (line 12):

a∗h =
1∑N

n=1 exp
(
− 1
λJ n

) N∑
n=1

exp

(
− 1

λ
J n
)
anh, (3)

for h = t, .., t+H where J n is the cost of the n-th trajectory,
λ is a temperature parameter that controls exploration, and
ant is the control input of the n-th trajectory at time step t.
Finally, only the first updated control input a∗t is executed,
while the un-executed portion of the optimized trajectory is
used to warm-start the optimization at time t+1 (lines 13−14).
Cost function: The cost function is designed to select actions
that maximize the alignment between the two halves of the
cloth. This alignment is quantitatively assessed using the
Intersection over Union (IoU) metric, calculated based on the
ratio of the areas occupied by each half PU and PB when
projected to the folding plane. We additionally incorporate in
the cost function a term discouraging actions resulting in large
displacements of the cloth. Specifically, the cost function is
defined as a weighted sum of two cost terms:

J (τt:t+H) = w1c1(τt:t+H) + w2c2(τt:t+H), (4)

Algorithm 1: AdaFold
Result: Optimized folding actions a∗0:T .
Input: Pick and place positions {xpick, xplace}, Learned

models fθ and gψ , Horizon H , Number of
action candidates N , Control hyper-parameters
λ,w1, w2, Initial control sequence a0:H ,
Control variance: Σ

1 for t← 0 to T do
2 Pt = PUt ∪ PBt ← Cloth Perception({I1t , I2t })
3 for n← 1 to N do
4 ant:t+H ← N (at:t+H ,Σ) ▷ Constrained
5 zt ← gψ(τt−K:t−1)
6 for h← t to t+H do
7 Compute τh:h+1 unrolling fθ
8 J n(τh:h+1)← w1c1 + w2c2 ▷ Eq. ( 4)
9 end

10 J n(τt:t+H)←
∑t+H
h=t J n(τh:h+1)

11 end
12 a∗t:t+H ← MPPI({J n(τt:t+H)}Nn=1, λ) ▷ Eq. ( 3)
13 Execute a∗t
14 Warm-start control sequence a with a∗

15 end

where the weight vectors w1, w2 allow us to weigh differently
the desired behaviors. The first term c1 evaluates the progress
towards the alignment of the two halves as:

c1(τt:t+H) =

H∑
j=1

βH−jIoU(P̂Ut+j , P
B
t+j), (5)

where β is a weighting factor within the interval (0, 1). In
particular, βH−j has the role of progressively increasing the
importance of future cloth alignments as its value increases
while j increases. This design choice prevents the robot from
greedily selecting actions that lead to aligning the halves
as fast as possible, compromising the future quality of the
fold. The second term c2, instead, acts as a binary flag that
assesses whether the action at leads the gripper’s subsequent
position xt+1 outside a predefined convex hull defined by the
initial shape of the flattened cloth. In practice, c2 is set to 1 if
the gripper exits the specified convex hull, while it is set to 0
otherwise. Intuitively, if the gripper pulls the corner towards
a region beyond the initial cloth shape, the action results in a
larger movement of the entire cloth.
Constrained random sampling: To reduce the action search
space, we constrain the sampling of the random candidate
control sequence at time t by sampling directions d similar
to the pick-and-place direction dpp. Specifically, we impose
the cosine similarity (CS) to satisfy CS(d,dpp) ≥ 0, which
enforces the actions to always move towards the place
location. The actions are then defined as a = (d/∥d∥)v
where v is a fixed value specifying the action norm.
Place reaching: If the termination of the sampled trajectory is
not sufficiently close to the place position, we use a heuristic
to extend the path. This heuristic continues the trajectory
along a linear path towards xplace Fig. 2 shows an example
of candidate trajectories (light blue) terminating in the place
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TABLE I: Properties of the real-world cloths, measured as specified
in [35]. CT, Stiff. and Elast. stand for respectively construction
technique, stiffness and elasticity.

Cloth Size [cm]2 Material CT Stiff. Elast.

1 20× 30 Polyester Woven-Plain 0.41 0.03
2 17× 25 Polyester Woven-Plain 0.56 0.40
3 17× 25 Cotton Knitted 0.69 0.36
4 17× 25 Wool Knitted 0.71 0.68
5 17× 25 Cotton Woven-Twill 0.78 0.08
6 17× 25 Cotton Woven-Plain 0.74 0.06
7 28× 20 Cotton Woven-Plain 0.87 0.22

position. While extending the trajectory to the place position
is a reasonable assumption since xplace is known, it could
be removed by incorporating an attractor towards the place
position into the cost function, with the disadvantage of an
additional hyperparameter to tune.

VI. IMPLEMENTATION DETAILS

A. Half folding task

Overview: We consider the half folding task proposed in [10].
In this task, the agent controls a square or rectangular cloth
placed approximately in the center of the environment at the
beginning of each episode. We assume the agent starts from
a grasped state, while the objective is to fold the cloth in half
by aligning the corners.
Success Criteria: We evaluate the success of the folding
execution by computing the 2D intersection over union (IoU)
between the two halves of the cloth as described in Sec-
tion V-B. As the bottom half of the cloth will be occluded
in later stages of the manipulation, we use as a reference the
points observed at time t = 0.

B. Simulation

We implemented the half-folding task in PyBullet [34].
To collect a training dataset of state-action trajectories, we
selected a square cloth of length 20cm with elastic and
stiffness parameters of 40 and 60, respectively. We include
variations of these two parameters in the interval [20, 100] in
the test phase. We considered pick and place positions in the
top-left and bottom-left corners, as selecting specific pick and
place locations for data collection has shown to be beneficial to
learn transition models for folding [13]. We then generated
1000 pick-and-place trajectories τ with T = 12 using the
constrained random sampling described in Sec. V-B, resulting
in ∼ 15k training data points. We further augment the point
clouds during training by applying random scaling, rotations,
translations, and adding Gaussian noise.

C. Real-world

The real-world set-up and the samples used for the
experiments are visualized in Fig. 4.
Dataset: We utilized six rectangular cloths with different
material, construction, and physical properties [36], none of
them matching the one used in the simulation, and one pair
of pants (see Fig. 4). Specifically, cloths 2− 6 share the same
shape but differ in physical properties. Cloth 1 retains the

Fig. 4: Visualization of the real-world set-up: two Realsense D435
cameras capturing different views of the scene, and the dataset
composed of 7 cloths.

TABLE II: Comparative folding results showcasing the final IoU.
The folding is executed 20 times for each combination of cloth and
methods, where N = 10.

Method 1 Cloth ↑ N Cloths ↑

Random 0.39± 0.14 0.40± 0.17
Triangular 0.41± 0.00 0.41± 0.02
DDPG-Critic 0.49± 0.09 0.48± 0.09

Adafold-OL 0.53± 0.17 0.48± 0.16
Adafold-NL 0.57± 0.08 0.57± 0.09
AdaFold 0.83± 0.09 0.78± 0.11

rectangular shape, but it is bigger than the others. Cloth 7
differs in shape and size. We report the cloth properties in
Table I.
Perception: We collected observations from two calibrated
cameras. To find the geometric features from the mask of the
full cloth, we fit a polygon with respectively 4 and 7 vertices
to the rectangular and pants objects. We then constructed
the point cloud based on the camera intrinsics and extrinsic
parameters. We further filtered the point cloud to remove
outliers and voxelize it with a voxel size of 0.8cm. To track
the masks, we used an open-source pre-trained video tracker
available at [9].

D. Modeling and Planning

Modeling: We used the official implementation of the seg-
mentation and classification branches of PointNet++ [33] for
the forward and adaptation network architectures, respectively.
We considered K = 3 past observations and M = 3 future
predictions for the multi-step MSE loss, while the dimension
of the latent variable z was set to 32. We trained the models
for 400 epochs, with a learning rate of 0.001 and a batch size
equal to 32.
Planning: We set the horizon to H = 12 and considered
N = 100 candidate trajectories drawn from a multivariate
Gaussian distribution initialized at time t = 0 with zero mean
and diagonal covariance matrix set to 0.01. At the time t > 0,
we kept the covariance of the distribution fixed while the
mean was updated using Eq.3 with temperature parameter
λ = 0.01. We set the remaining planning hyperparameters
to w1 = 1, w2 = 0.03, β = 0.5, and v = 0.03.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2024

Fig. 5: Cost and action initialization ablation. The reference perfor-
mance of the Triangular trajectory is shown as the red horizontal
dashed line. The fold is executed 20 times for each ablation.

VII. EXPERIMENTAL RESULTS

Our experiments aim to study the effectiveness of AdaFold
to optimize folding trajectories via feedback-loop manipula-
tion. In particular, we investigate to what degree our proposed
approach: 1) improves the folding outcome, 2) generalizes to
cloth with variations in physical properties, and 3) improves
the particle-based representation of the cloth through semantic
labels.

A. Baselines

We compare AdaFold against five different baselines. The
first baseline, representing most of open loop methods, is a
fixed triangular trajectory (Triangular), which was selected
as the best performing in simulation when compared to a
linear trajectory. The second is a random baseline (Random),
which, at each time step, randomly selects an action among
all the candidate actions. The third and fourth baselines are
ablations of AdaFold, one considering an open-loop version
of AdaFold (AdaFold-OL) that optimizes the trajectory once
at the beginning of the folding, and one that uses a point cloud
without labels (AdaFold-NL). The final baseline we compared
to was the model-free learning method DDPG [37]. For a fair
comparison, we trained DDPG offline on the same dataset as
AdaFold to learn a state-action value function. At test time,
we used the learned value function to select the best action
among the candidates (DDPG-Critic). The reward function and
the model architecture for this baseline correspond to the one
chosen for our approach, where the critic architecture and
hyperparameters match the ones of AdaFold. As the output
of the critic has the same dimension as the number of input
points, to extract the value from the output of the segmentation
branch, we select the first point of the network output as
similarly done in [16].

B. Folding Optimization Results

The goal of this section is two-fold: assessing the rele-
vance of optimizing the folding trajectory and showcasing
the benefits of feedback-loop optimization. We conducted
the experiment in simulation, and we compared our method
against the five baselines presented in the previous section.
We measured the folding success using the IoU metric. We
evaluated all the methods under two conditions: one where
the folding task utilized the same cloth as in training and
another where 10 cloth parameters were randomly selected to

Fig. 6: Evaluation of different planning horizons, where the task
length is T = 12. For each horizon, the fold is executed 20 times.

TABLE III: Final IoU evaluated on real-world Cloths (C.) 2 − 6.
The folding is repeated 5 times for each combination of cloth and
method. Best viewed with zoom.

C. Triangular ↑ DDPG-C ↑ AdaFold-OL↑ AdaFold-NL ↑ AdaFold ↑

2 0.63± 0.03 0.39± 0.10 0.65± 0.18 0.51± 0.07 0.72± 0.07
3 0.53± 0.04 0.33± 0.06 0.61± 0.08 0.58± 0.04 0.65± 0.06
4 0.61± 0.01 0.35± 0.18 0.70± 0.06 0.63± 0.02 0.74± 0.04
5 0.72± 0.09 0.37± 0.02 0.52± 0.12 0.59± 0.03 0.74± 0.06
6 0.75± 0.11 0.45± 0.16 0.77± 0.09 0.64± 0.03 0.81± 0.05

introduce variations not observed during training. We repeated
the folding 20 times for each combination of cloth parameters
and method.

Table II shows the folding results. It can be observed that
methods that do not optimize the folding trajectory, specif-
ically the Random and Fixed baselines, yielded the lowest
performance, thereby underscoring the advantage of trajectory
optimization. The Random baselines had, on average, a similar
performance to the Triangular baseline, as our constrained
sampling approach favours some alignment at the end of the
execution by completing the random trajectory till the place
position. While the model free-baselines (DDPG-Critic) im-
proved the fold compared to the Triangular baseline, the small
amount of offline data proved to be a challenging scenario for
learning a good value function for folding. A similar result can
be observed for AdaFold’s ablations (AdaFold-OL, AdaFold-
NL), which improved the fold compared to the fixed trajectory
but obtained, on average, a worse result than the feedback-
loop variant. AdaFold outperformed all the baselines and
achieved the best folds, showcasing the benefits of feedback-
loop optimization. Finally, the small difference between the
results over 1 or N cloths of the Triangular baseline suggests
that the variation in cloth behaviours that can be simulated by
PyBullet is not large, as studied in [38]. Thus, while AdaFold
folding success for N cloths still outperformed the Triangular
trajectory, we defer the evaluation of AdaFold’s generalization
to cloths with varying physical properties to the real-world
experiments.

C. Ablation Study

In this section, we examine the impact of various design
choices within our methodology. First, we explored the influ-
ence of individual components of the cost function, assess-
ing how the folding performance is affected by setting the
hyperparameters β,w2 to zero or by increasing w2 tenfold.
Additionally, we evaluated the impact different initializations
of the multivariate Gaussian distribution have on the resulting
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TABLE IV: Evaluation of AdaFold’s generalization to variations of
cloth initial positions and size. The evaluation metric is the IoU. The
folding is repeated 1 time for each random position, and 5 times for
cloth 1 for both evaluated methods.

Method 10 Poses ↑ Cloth 1 ↑ Leg ↑ Pants ↑

Triangular 0.63± 0.03 0.64± 0.03 0.58± 0.05 0.64± 0.03
AdaFold 0.72± 0.08 0.76± 0.04 0.64± 0.04 0.68± 0.05

candidate actions. The initialization approaches we examined,
in addition to the zero initialization, were: random and the
predefined triangular trajectory. Fig. 5 presents the results of
the ablation. It can be observed that removing any of the
components decreased the overall quality of the fold, as well
as increasing the weight of c2. Moreover, the initialization
of the means of the multivariate Gaussian distribution signif-
icantly influenced the performance of our approach due to
the sampling-based nature of the MPPI algorithm. Among
the tested strategies, zero mean initialization demonstrated
superior performance over random and fixed initialization,
facilitating more efficient exploration of the control space by
the MPPI algorithm. Yet, the performance of all the ablations
consistently outperformed the Triangular baseline, suggesting
that minimal tuning of the cost function can still enhance the
performance relative to the baseline. Finally, we evaluated
different lengths of the planning horizon H . The results
presented in Fig. 6 show that increasing the planning horizon
led to better folds, suggesting that a shorter horizon leads to
myopic behaviours.

D. Real World Experiments

This evaluation investigates to what extent AdaFold general-
izes to different cloth variations including physical properties,
position, size and shape.
Physical properties: First, we evaluated variations in physical
properties by assessing whether AdaFold can improve the
fold quality compared to the Triangular trajectory for cloths
2− 6. We evaluated the folding outcome with the IoU metric.
We present the results in Table III. The variance that the
Triangular trajectory exhibits highlights that identical folding
trajectories can yield different outcomes based on the cloth’s
properties, where stiffer cloths (e.g. samples 5 − 6) achieved
on average a better fold with respect to less stiff cloths.
Conversely, AdaFold consistently produced satisfactory folds
across different samples, improving the fold for samples where
the fixed trajectory fell short. Figure 1 provides a qualitative
comparison of the fixed and optimized trajectories for samples
2 and 6.
Position and size: We extended this evaluation by testing
AdaFold on variations in the initial positions and shapes of
the cloth. For the former variation, we selected cloth 2 and
randomly rotated its starting position on the table 10 times,
with rotations ranging between ±45◦ degrees. For the latter
variation, we selected cloth 1, which is larger than clothes
2− 6. We compared AdaFold against the Triangular baseline.
The results, detailed in Table IV under the columns “10 Poses”
and “Cloth 1”, show AdaFold outperforming the Triangular
trajectory in both scenarios.

Fig. 7: Visualization of: (top) the mask with no semantic tracked
over time, (bottom) AdaFold upper mask tracked over time.

TABLE V: Evaluation of the MAE of the IoU estimated with
different point cloud representations.

Camera(s) No Semantic ↓ VLM ↓ AdaFold ↓

Front 0.39± 0.10 0.39± 0.11 0.09± 0.02
Back 0.15± 0.07 0.15± 0.04 0.09± 0.05
Both 0.21± 0.09 0.23± 0.08 0.04± 0.05

Shape: We finally tested AdaFold’s ability to handle different
shapes and more complex folding using a pair of pants. We
designed two different scenarios: 1) folding one leg in half,
where the overall shape differs from a rectangle, and 2) folding
in half the pants with both legs already folded, where the
shape is still rectangular but the cloth is already folded in
multiple layers. The results, detailed in Table IV under the
columns “Leg” and “Pants”, show AdaFold outperforming
the Triangular baseline, confirming its versatility with various
shapes and pre-folded configurations.

The overall outcome confirms the adaptability of our
method, underscoring the benefit of using particle-based rep-
resentations along feedback-loop manipulation to adapt to
different object variations.

E. Semantic Cloth Representation

Finally, we assess whether our proposed perception module
improves the representation of the cloth. Unlike previous
sections, the IoU is used as a quantitative description of the
cloth state instead of a performance metric. As an evaluation
dataset, we used a subset of the real-world trajectories recorded
for the previous evaluations. We manually annotated the masks
belonging to the upper or bottom half of the cloth to extract
PU and PB to compute the ground truth IoU. To compare
different state representations, we used the mean absolute
error (MAE) computed between the estimated IoU from a
specific cloth representation and the ground truth. Specifically,
we compared the representations with semantic descriptors
obtained through our perception module (AdaFold), against
a baseline representation lacking semantic descriptors (No
Semantic), and a segmentation method derived from a greedy
selection of the highest confidence mask from the same VLM
used for object segmentation at t = 0 with prompts “upper
half cloth”, “bottom half cloth” (VLM). We further integrated
the comparison between one and two camera points of view.
As shown in Table V, our approach always achieved the lowest
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MAE, with the best performance provided by leveraging the
observations from both cameras. The representation with no
semantic information obtained the worst results, confirming
the challenges of distinguishing different folded states only
relying on the observed points of the cloth. Integrating se-
mantic information from the VLM did not yield good results,
as the model always suggested the full cloth as a mask instead
of the desired cloth regions. Trying to tune the prompts did not
provide any improvement. In contrast, our method successfully
segmented the desired cloth region. Fig. 7 shows qualitative
results of the obtained masks. These results confirm that
augmenting point clouds with semantic descriptors provides
a better representation of different folded configurations.

VIII. CONCLUSION AND FUTURE WORK

AdaFold framework leverages model-based feedback-loop
manipulation to optimize cloth folding trajectories. It inte-
grates semantic descriptors extracted from geometric features
into point cloud representations. The experiments validated
the hypothesis that AdaFold adapts folding trajectories to
variations in physical properties, positions, and sizes of cloths.
It was further showcased the potential of coupling a strong
perception module with data-driven optimization strategies
to perform feedback-loop manipulation. We plan to extend
these results to different goal and reward configurations and
a broader spectrum of manipulation tasks. We will investi-
gate the integration of model-based and model-free learning
approaches to address the computational demands of model-
based planning.
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