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Abstract— We study the problem of learning graph dynamics
of deformable objects that generalizes to unknown physical
properties. Our key insight is to leverage a latent representation
of elastic physical properties of cloth-like deformable objects
that can be extracted, for example, from a pulling interaction.
In this paper we propose EDO-Net (Elastic Deformable Object
- Net), a model of graph dynamics trained on a large variety of
samples with different elastic properties that does not rely on
ground-truth labels of the properties. EDO-Net jointly learns
an adaptation module, and a forward-dynamics module. The
former is responsible for extracting a latent representation of
the physical properties of the object, while the latter leverages
the latent representation to predict future states of cloth-like
objects represented as graphs. We evaluate EDO-Net both
in simulation and real world, assessing its capabilities of: 1)
generalizing to unknown physical properties, 2) transferring
the learned representation to new downstream tasks.

I. INTRODUCTION

Manipulation of deformable objects is a fundamental

skill toward folding clothes, assistive dressing, wrapping or

packaging [1], [2], [3]. In these scenarios, deformables are

subject to variations of physical properties such as mass,

friction, density, or elasticity, that influence the dynamics

of the manipulation [4], [5]. Despite the progresses made

in robotic manipulation of deformable objects, modelling,

learning, and transferring skills remain open challenges [6].

The complexity of the problem arises from the following two

factors characterizing deformable objects [7]: i) their state

is high dimensional and difficult to represent canonically; ii)

their interaction dynamics are often non-linear and influenced

by physical properties usually not known a priori.

To address i), analytical models often employ particle-

based representations such as graphs extracted from point

clouds [8], [9]. These representations, combined with cur-

rent advancements in Graph Neural Network (GNN), have

shown promising results in learning complex physical sys-

tems [10], [11], [12]. However, current methods assume

that the physical properties are known a priori, which may

not hold when robots operate in human environments. Thus,

addressing problem ii) is of fundamental importance. The

field of intuitive physics [13] tackles this challenge by

learning predictive models which distill knowledge about

the physical properties from past experience and interaction
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Fig. 1: A pulling interaction is leveraged by EDO-Net to

explore the elastic properties of the object, which improves

the performance in subsequent tasks such as partial bandage.

observations [14]. This line of research has so far focused

mostly on rigid objects, but recent advances of data-driven

techniques for deformable objects manipulation suggest that

interactions such as whipping or pulling may be relevant to

learn an intuitive physics model of these objects [7], [15].

In this paper, we study the problem of learning graph

dynamics of deformable objects that generalize to objects

with unknown physical properties. In particular, we focus

on elastic properties of cloth-like deformable objects, such as

textiles, that we explore through a pulling interaction (Fig. 1).

We propose EDO-Net (Elastic Deformable Object - Net), a

model trained on a large variety of samples with different

elastic properties, without relying on ground-truth labels

of these properties. EDO-Net jointly learns an adaptation

module, responsible for extracting a latent representation of

the physical properties of the object, and a forward-dynamics

module, that leverages the latent representation to predict

future states, represented as graphs.

We evaluate our approach both in simulation and in the

real world, showing how EDO-Net accurately predicts the

future states of a deformable object. We also validate the

quality of the learned representation by retrieving the ground

truth physical properties from the simulation environment

using a weak learner. In summary, our contributions are:

• EDO-Net, a model to learn graph dynamics of cloth-
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like deformable objects and a latent representation of

their physical properties without explicit supervision;

• a procedure to train EDO-Net on a large variety of

samples with different elastic properties, enabling gen-

eralization to objects with unknown physical properties;

• extensive evaluations, both in simulation and in the real

world, of the quality of the latent representation and of

the dynamics prediction.

II. RELATED WORK

We discuss the related work from the perspective of

learning physical properties, representations and dynamics

of deformable objects, as well as robotic tasks that could

benefit from our proposed method.

Learning physical properties: a common approach to ex-

tract physical properties like mass, moment of inertia or

friction coefficients is to use different exploratory actions

such as pushing, tilting or shaking [5], [16], [4]. In [5]

mass and friction of rigid objects are learned through tactile

exploration. Similarly, [17], [4] use a multi-step frame-

work to encode physical properties of rigid objects from

pushing tasks using dense pixels representations. Related

to deformable objects, in [18] the authors propose how to

predict properties of cloth-like objects to perform real2sim by

learning to align real world and simulated behaviors through

a differentiable simulator. In contrast to [18], we want to

learn a representation of physical properties without relying

on simulated behaviors and elastic parameters.

Representations and dynamics of deformable objects:

regarding the challenge of finding canonical representations

of deformable objects, an approach is to encode their high

dimensional observations in structured latent spaces where to

perform planning and control. Few examples are [19], [20],

in which image observations are mapped in a latent space

represented as a graph using constrastive learning, allowing

to perform visual action planning to solve a folding task.

A complementary way to leverage graphs is to use them to

represent the state of the cloth and to learn its dynamics

through GNNs [10], [21]. A particular line of research on

learning graph dynamics of deformable objects addressed

the challenge of partial observability [9], [22]. Other work

instead looked into physics priors provided by differentiable

simulators to better capture the complex dynamics models

of deformable objects [23]. None of these works, however,

focus on learning graph dynamics across a wide range of

physical properties of deformable objects without relying on

ground truth labels.

Tasks with cloth-like deformable objects: a substantial

part of the work in manipulation of cloth-like deformable

objects focuses on solving various robotic tasks including

cloth folding [24], [1], [25], cloth smoothing [26], [9], [27],

as well as healthcare applications like assisted dressing [2],

[28], [29] and bedding manipulation [30], [31]. In these

tasks, the different elastic properties of clothes influence

the manipulation strategy that the robot has to execute.

However, none of the aforementioned methods account for

these variations, meaning that they could benefit from EDO-

Net latent representation to adapt the manipulation strategy to

different elastic properties and improve their generalization.

We plan to explore this direction in future work.

III. PROBLEM FORMULATION

In our formulation, we refer to the object’s elastic prop-

erties as Ti ∼ T , where T is the distribution of all possible

physical properties. We explore Ti by collecting a sequence

of observations Oi through an Exploratory Action (EA) [4],

[5]. An adaptation module is responsible for extracting a

latent representation zi of the physical properties Ti from the

observations Oi, which can be subsequently leveraged by a

forward dynamics module to generalize its predictions across

different Ti ∼ T . We define the state of a deformable object

with physical properties Ti as a graph Gi = (V i, Ei) with

nodes v ∈ V i and edges e ∈ Ei. The features of the node

v describe the 3D Cartesian position of the nodes, while the

features of the edge e characterize the interaction properties

among nodes. Given these, the aim of EDO-Net is to learn

a graph dynamics model of cloth-like deformable objects gθ
conditioned on a latent representation zi of the underlying

physical properties Ti and the robot control action at:

δĜi
t = gθ(G

i
t, at, zi). (1)

The latent representation zi can be obtained through a

learned function fφ that takes as input a sequence of ob-

servations Oi and an initialization z0 of the representation:

zi = fφ(O
i, z0), (2)

where the initialization z0 is learned together with the

model’s parameters θ and φ. In what follows, we will

describe in detail the method to implement and train the

graph dynamics gθ and adaptation fφ functions, respectively.

IV. METHOD

An overview of the proposed EDO-Net is shown in Fig. 2.

In particular, for each deformable object with unknown

physical properties Ti, the robot has to adapt the initialization

z0 by using a sequence of exploratory observations Oi.

From Oi, the adaptation module fφ first extracts a latent

representation zi of the physical properties Ti. The extracted

representation zi is subsequently used in the forward dynam-

ics module gθ to obtain accurate predictions of the future

states of Ti conditioned on different interactions at.

We focus on the scenario where the physical properties

Ti are not directly observable from the initial state of the

object. We assume that the state Gi
t of the deformable object

with physical properties Ti is directly observable, which in

real-world applications can be extracted from point clouds

observations [32], [9]. We plan to relax this assumption in

future work, for example by relying on approaches that tackle

the challenge of partial observability using GNNs [9], [22].

A. Exploratory Action and Adaptation

To collect information about the physical properties Ti, the

robot needs to observe the response of the object during a

dynamic interaction. To this end, we evaluate a pulling inter-

action shown in Fig. 3, where a two-arm robotic manipulator



Fig. 2: Scheme of the overall model. Given a deformable object Ti with unknown physical properties, the adaptation module

fφ updates the initialization z0 of the latent representation of the physical properties Ti from sequences of observations

Oi
t|t=1,...,T processed by an attention layer and a RNN. In a second phase, the forward dynamics module gθ, implemented

as a GNN, uses zi obtained from the adaptation module to predict future states Ĝt of the deformable object.

grasping a deformable object from its edges exerts tension

stress on the object by pulling its edges along opposite di-

rections, similarly to what is done in [15]. During the pulling

Exploratory Action (EA), we record a set of T observations

Oi = Oi
t |t=1,...,T where each Oi

t = (GOi

t , FO
i

t ) consists

of the object state GOi

t and the force FO
i

t recorded from

the robot sensors at time t. The information contained in

Oi about the physical properties Ti is subsequently input

to the learned function fφ to update the initialization z0.

The implementation of the adaptation function fφ is the

following: for each observation Oi
t, we encode (GOi

t , FO
i

t )
into a latent embedding oit through a Multi-Layer Perceptron

(MLP). We subsequently obtain an estimate ẑti ∈ R
p of zi

from oit by learning a node’s aggregation function through

an attention layer, which aggregates the nodes as:

ẑti =
∑

v∈V i

αno
i
tv
, (3)

where αn is the attention weight of the node n. For details

about the implementation of the attention mechanism, we

refer the reader to [33]. The set of ẑti |t=1,..,T is used

to obtain the latent representation zi ∈ R
p by recursively

updating the initial belief z0 through a Recurrent Neural

Network (RNN), yielding the following update rule:

zi = RNN(ẑti |t=1,..,T , z0). (4)

Fig. 3: Pulling Exploratory Actions to observe graphs and

forces.

B. Forward Dynamics Module

We model the forward graph dynamics gθ with a GNN

conditioned on the latent representation zi of the physical

properties Ti. We trained gθ to predict state differences δGi
t,

receiving as input the control action of the robotic manipu-

lator at and the initial state of the object Gi
t. We integrate zi

as features of the edges of the input graph as shown in the

input processing block in Fig. 2. We use MLPs to encode

nodes and edges before propagating the information among

the nodes using a standard M-step message passing GNN

with the following update rule at step m [34]:

hmv = Φ





∑

s∈N 1
v
∪N 2

v

Ψ
(

hm−1
v , hm−1

s , zi
)



 ∀v ∈ V i, (5)

where Ψ and Φ are the learned message and update functions,

and N 1
v and N 2

v are the sets of 1st and 2nd order neighbors

of the node v ∈ V i. To decrease the number of steps

needed to propagate the information along the graph, we

parallelize the computation of 1st and 2nd order neighbors

as suggested in prior work [35]. Finally, the M -th hidden

nodes are passed through a decoder MLP to the prediction

of the graph displacement δĜi
t.

C. Training Loss

The overall model can be learned using a dataset of

exploratory observations DO = {DOi

}Ti∼T and a dataset

of interactions D = {Di}Ti∼T . The parameters φ, θ and

the initialization z0 can be optimized using a loss on the

prediction of the state difference δĜi
t obtained from gθ for

each training sample with physical properties Ti ∼ T . The

loss function L can be defined as follows:

L = E Ti∼T

Gi

t
,at,δG

i

t
∼Di

[fθ(Pt +m, at, gψ())] , (6)

where zi = fφ(O
i, z0) with Oi ∼ DOi

, and d is the

Mean-Squared Error (MSE) between the ground truth state

displacement of the deformable object and the model’s

prediction. Equation 6 optimizes the parameters θ to learn

a forward dynamic model conditioned on different repre-

sentations zi of physical properties Ti, implicitly driving

the parameters φ to learn to encode zi of different samples

without supervision from ground truth labels of the physical

parameters. Moreover, training across multiple Ti ∼ T



(a) Lifting - Simulation (b) Partial Bandage - Simulation (c) Partial Bandage - Real world

Fig. 4: The environments employed to evaluate EDO-Net.

enforces the model to learn how to generalize to deformable

objects with unknown physical properties.

V. ENVIRONMENT AND IMPLEMENTATION DETAILS

In this section, we introduce the simulated and real-world

environments designed to evaluate the proposed method,

along with its implementation and training details.

A. Environments Setup

For the simulation experiments we use Pybullet [36],

[37], in which we create the two environments displayed in

Fig. 4a and Fig. 4b. Both environments include two free-

floating Franka-Emika Panda end-effectors equipped with

Force/Torque sensors. In the first environment, called Lifting,

the robot lifts a sphere located on a cloth-like deformable

object from an initial resting position on the table to a

predefined height, by applying a displacement control action

at ∈ [0, Dmax]. In the second environment, called Partial

Bandage, the robot holds and pulls the cloth downward over

a human arm, applying a force control action at ∈ [0, Fmax].
For both environments, we uniformly discretize the action

intervals into 30 instances with fixed step size, while the

pulling EA is implemented as shown in Fig. 3. We extract

the graph Gi
t and force F it observations at each time step

of the simulation and we downsample it to a grid of 8 × 8
nodes. Furthermore, we smooth the force profiles using a

Savitzky–Golay filter [38] with a window size of 21 and

a third-grade polynomial. We generate a large variety of

physical properties of the cloth by varying both the stiffness

and the bending parameters of the simulator. We empirically

selected the elasticity parameters in the range [10, 45] with

a step size of 3.0, and the bending parameters in the range

[0.01, 5.01] with a step size of 0.5, for a total of 143 unique

elastic deformable objects.

We replicate the Partial Bandage environment in the real

world as visible in Fig. 4c. We collect the pulling EA and the

interaction trajectories on 40 textile samples with different

elastic properties where the dataset characteristics correspond

to the one in prior work [39]. The real-world dataset and the

graph extraction procedure are shown in Fig. 5.

B. Network Architecture and Training details

We used an MLP with one hidden layer of size 32
to implement the node encoder of the adaptation module,

Fig. 5: Textile dataset samples (top) and procedure to extract

graphs from point cloud (bottom). First we represent the

grippers as 8 equidistant nodes (a). We then slice the point

cloud with a plane passing through 2 corresponding nodes

of the grippers, obtaining 6 additional equidistant nodes (b).

We obtain the final graph by connecting the neighbors of

each node as shown in (c).

while the attention layer is implemented as a learned linear

projection from the encoded node ov ∈ R
32 to the attention

value αv ∈ R. The RNN architecture has one hidden state

which starts with initialization z0 ∈ R
p and outputs zi ∈ R

p

as its last hidden state, with p = 32. Hyperparameters were

chosen empirically based on the highest overall performance

across the evaluations. Regarding the forward model, we

propagate the information for M = 4 steps, while we

implement the node’s encoder, the final linear projection, and

the message and the aggregation functions as MLPs with one

hidden layer of size 32. We use ReLU as non-linearity for

all the modules except the RNN, where we use tanh as the

activation function. The models are trained on the datasets

normalized to zero mean and unit variance for 5000 epochs

and batch size equal to 8. We used Adam [40] with a learning

rate of 10−3 and weight decay equal to 10−5. The simulation

dataset consists of 30 datapoints for each of the 143 unique

samples for Lifting, Partial Bandage and the pulling EA. We

split the 143 samples into a train (80%), validation (10%),

and test (10%) samples. In the real world, instead, the dataset

consists of 30 datapoints for each of the 40 unique samples

for the Partial Bandage and the pulling EA. We split the 40



samples into a training (80%) and test samples (20%).

VI. EXPERIMENTS

In this section we evaluate the performance of EDO-Net,

regarding its adaptation module fφ, forward module gθ and

its generalisation capabilities. To this aim, we:

1) examine in simulation how accurately we can decode

physical properties from the latent representation zi by

learning to predict ground-truth parameters from zi;

2) quantitatively evaluate in simulation whether the latent

representation zi transfers between environments (from

Partial Bandage to Lifting) or to different downstream

tasks, such as learning an inverse model to predict the

control action between two states;

3) analyze both in simulation and real-world environ-

ments the generalization capabilities of EDO-Net, test-

ing the model over a set of deformable objects with

unseen elastic physical properties Ti ∼ T .

We compare EDO-Net with a Non-Conditioned (NC)

baseline model, which trains the forward model gθ without

conditioning on zi. We also consider an ablation of EDO-

Net trained on a single exploratory observation, rather than

a sequence of interactions, which we denote by EDO1.

Moreover, we include three oracle models in simulation to

set an upper-bound performance for the tasks: two Oracle

models conditioned on the ground-truth simulation param-

eters, respectively (OI) and (OF) for inverse and forward

dynamics models, and an Oracle Supervised forward model

(OS), trained with an additional supervised loss term over

zi, to directly predict the ground-truth simulation parameters

during the training procedure.

A. Decoding Physical Properties

The aim of this section is two-fold: 1) to evaluate whether

it is possible to decode the ground truth physical properties

Ti of the deformable object from the latent representation

zi, and 2) to analyse the influence of the length T of

the sequence of exploratory observations used to extract

zi. In particular, we train an MLP with 3 hidden layers

of size 64 and ReLU non-linearities which takes as input

the learned representation zi to predict the bending and

elastic parameters of the simulator. We evaluate the predicted

physical parameters in both the Partial Bandage and Lifting

environments by evaluating the MSE between the ground

truth normalized physical parameters and the model pre-

dictions. We distinguish between seen and unseen physical

properties depending on whether Ti ∼ T was used to train

the model or not. Fig. 6 shows the prediction results of the

physical parameters from the learned zi while varying the

number T of exploratory observation Oi used to extract the

representation. It can be noticed how increasing the number

of observations improves the quality of the latent represen-

tation of the physical properties learned by fφ, highlighting

the relevance of using a sequence of dynamic interactions

to encode physical properties. Moreover, the performance of

EDO-Net is close to OS, suggesting that the loss in Eq. 6

implicitly trains the model to learn a latent representation of

Fig. 6: MSE (in normalized units) of the prediction of the

simulation parameters varying the length T of the sequence

of exploratory observations.

the physical properties without explicit supervision from the

ground truth labels.

B. Evaluation of the Adaptation Module fφ

In this section, we further evaluate zi by answering the

following questions: can we 1) transfer zi to efficiently learn

forward models of different environments, and 2) transfer zi
to efficiently learn new downstream tasks, such as inverse

dynamics prediction? To address these questions we pretrain

EDO-Net on the Partial Bandage environment and designed

the following scenarios:

1) Bandage2Lifting: we fine-tune the forward dynamics

model g′θ on the Lifting environment, while keeping

the weights of fφ fixed;

2) Inverse Dynamics: we train an inverse dynamics model

g′′θ conditioned on zi in the Partial Bandage environ-

ment to predict the control action ati between the initial

state of the deformable object Gi
0 and the next state

Gi
t while keeping the weights of fφ fixed.

In the Bandage2Lifting scenario, we evaluate the per-

formance of the fine-tuned model by computing the MSE

between the state-differences δĜt+1

i (in normalized units)

and the ground-truth δGt+1

i of the Lifting environment for

deformable objects with physical properties Ti ∼ T unseen

during training. For the Inverse Dynamics scenario, we

implement g′′θ by initially encoding graph nodes and physical

properties zi with an MLP, subsequently projecting their

concatenation to a latent space of the same dimensionality of

the action. We finally aggregate and average the projections

to obtain the predicted action. The performance of the

inverse model is evaluated by computing the MSE between

the normalized versions of the predicted action âti and the

ground-truth action ati. For both scenarios, we compare the

model’s performance with the NC baseline, and EDO1.

For the Bandage2Lifting scenario we set as reference

performances EDO-Net model trained directly on the Lifting

environment (EDO(L)-Net) and OF, while for the Inverse

Dynamics scenario we set as reference performances OS and

OI. The results are presented in Table I. We observe in the

Bandage2Lifting scenario that all the evaluated models out-

perform the NC baseline, indicating that the representation zi



Fig. 7: Qualitative evaluation of the graph dynamics predictions Ĝt obtained by EDO-Net and the NC baseline starting from

the inital graph G0. For each environment we select two elastic samples with different physical properties T1, T2.

learned in the Partial Bandage environment is informative for

the Lifting one. For the Inverse Dynamics scenario, instead,

we observe that EDO-Net outperforms all the other baseline

methods. These results suggest that our latent representation

transfers to different environments and downstream tasks.

C. Generalization to Unseen Physical Properties

In this section, we evaluate the generalisation capabilities

of EDO-Net. We consider both simulation and real-world

environments, and we perform quantitative and qualitative

tests of the model over a set of deformable objects with

elastic physical properties Ti ∼ T unseen during training. We

evaluated the model’s performance by computing the MSE

of the model’s predictions with respect to the ground truth

for each testing sample. We compare the performance of our

model with respect to the NC and the EDO1 baselines. In

simulation we also compare to OS and OF. In Table II we

report the mean and standard deviation of the MSEs evalu-

ated across all the testing samples with physical properties

Ti ∼ T . In all scenarios, EDO-Net outperforms the baseline

models both in terms of the average error and the standard

deviation across samples with different elastic properties.

The high standard deviation of the NC model is due to the

large difference between the average elastic behavior and the

extreme (rigid/elastic) ones. Moreover, EDO-Net achieves

comparable performances with respect to OF. Qualitative

visualizations of the relevance of our proposed method for

both simulation and real-world environment are shown in

Fig. 7. We can observe how the NC baseline does not distin-

TABLE I: Results of Bandage2Lifting and Inverse Dynamics

scenarios (in normalized units), with T=5. Lower is better.

(a) Bandage2Lifting

Model MSE (×10−3)

NC 6.668± 13.02
EDO1 0.233± 0.313
EDO-Net 0.270± 0.491

EDO(L)-Net 0.102± 0.068
OF 0.081± 0.040

(b) Inverse Dynamics

Model MSE

NC 9.705± 11.11
EDO1 0.212± 0.331
EDO-Net 0.058± 0.096

OS 0.051± 0.041
OI 0.035± 0.057

guish among samples with different physical properties (T1
and T2), hindering its capability of predicting the outcome

of the robot control actions. On the other hand, EDO-Net

successfully leverages the latent representations (z1 and z2)

provided by the adaptation module fφ.

TABLE II: Generalisation results of EDO-Net and the

baselines in the simulated and real-world environments (in

normalized units), with T=5. Lower is better.

Model MSE (×10−3) MSE (×10−3) MSE (×10−3)
Partial Bandage Lifting Partial Bandage

simulation simulation real world

NC 29.60± 65.29 6.585± 12.79 59.37± 57.50
EDO1 0.260± 0.197 0.171± 0.106 3.046± 1.603
EDO-Net 0.151± 0.125 0.102± 0.068 1.481± 0.500

OS 0.992± 1.480 0.321± 0.699 −

OF 0.122± 0.194 0.081± 0.040 −

VII. CONCLUSIONS

We presented EDO-Net, a data-driven model that learns

a latent representation of physical properties of cloth-like

deformable objects to generalize graph-dynamic predictions

to objects with unseen physical properties. We assessed

in simulation that it is possible to decode ground truth

parameters from the learned representation, as well as to

transfer the representation across different environments.

Furthermore, we assessed both in simulation and real world

how conditioning the forward dynamics model to the latent

representation zi helps in generalizing over unseen physical

properties. The latent representation learned from EDO-

Net is relevant for robotic tasks to generalize manipulation

skills to a wide variety of cloth-like objects. Moreover,

leveraging this framework with multiple exploratory actions

could enable learning physical properties beyond elasticity

and generalizing to different manipulation tasks.
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[33] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint

arXiv:1710.10903, 2017.
[34] Y. Li, J. Wu, J.-Y. Zhu, J. B. Tenenbaum, A. Torralba, and R. Tedrake,

“Propagation networks for model-based control under partial observa-
tion,” in 2019 International Conference on Robotics and Automation

(ICRA). IEEE, 2019, pp. 1205–1211.
[35] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,

H. Harutyunyan, G. Ver Steeg, and A. Galstyan, “Mixhop: Higher-
order graph convolutional architectures via sparsified neighborhood
mixing,” in international conference on machine learning. PMLR,
2019, pp. 21–29.

[36] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[37] Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C.
Kemp, “Assistive gym: A physics simulation framework for assistive
robotics,” in 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2020, pp. 10 169–10 176.
[38] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data

by simplified least squares procedures.” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[39] A. Longhini, M. Moletta, A. Reichlin, M. C. Welle, A. Kravberg,
Y. Wang, D. Held, Z. Erickson, and D. Kragic, “Elastic context:
Encoding elasticity for data-driven models of textiles,” 2022. [Online].
Available: https://arxiv.org/abs/2209.05428

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

http://pybullet.org
https://arxiv.org/abs/2209.05428

	Introduction
	Related Work
	Problem Formulation
	Method
	Exploratory Action and Adaptation
	Forward Dynamics Module
	Training Loss

	Environment and Implementation Details
	Environments Setup
	Network Architecture and Training details

	Experiments
	Decoding Physical Properties
	Evaluation of the Adaptation Module f
	Generalization to Unseen Physical Properties

	Conclusions
	Acknowledgements
	References

