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Abstract— Identification of textile properties is an important
milestone toward advanced robotic manipulation tasks that
consider interaction with clothing items such as assisted dress-
ing, laundry folding, automated sewing, textile recycling and
reusing. Despite the abundance of work considering this class of
deformable objects, many open problems remain. These relate
to the choice and modelling of the sensory feedback as well as
the control and planning of the interaction and manipulation
strategies. Most importantly, there is no structured approach
for studying and assessing different approaches that may bridge
the gap between the robotics community and textile production
industry. To this end, we outline a textile taxonomy considering
fiber types and production methods, commonly used in textile
industry. We devise datasets according to the taxonomy, and
study how robotic actions, such as pulling and twisting of
the textile samples, can be used for the classification. We also
provide important insights from the perspective of visualization
and interpretability of the gathered data.

I. INTRODUCTION

Interaction with deformable objects is an integral part of

our everyday life but still a challenge for robotic systems.

Work on robotic handling of textile or fabric traces back

several decades [1] and, despite the clear need in industry

and domestic applications, many of the problems related

to perception, planning and control remain open. From the

industrial perspective, textile production and subsequent pro-

cesses of garment design in fashion industry are largely not

automated. Fashion industry is also undergoing an important

transformation to address sustainability concerns, given that

textile and clothing overproduction has a significant negative

impact on the environment.

From the scientific perspective, robotic interaction with

deformable materials has gained significant attention re-

cently [2], [3]. Important milestones regarding the modelling,

perception, planning, control and simulation of deformable

materials have been identified but not yet reached. It may

even be so that until robots reach the dexterity, flexibility and

sensing that to some extend resembles human capabilities,

successful interaction with deformable objects will remain

a challenge. In robotics, textile has been used to study ma-

nipulation tasks like folding [3]–[5], robot-assisted dressing

[6]–[8], garment recognition and classification [9]–[12]. In

most of these works, only a subset of textile properties is

commonly considered, and textile is merely a tool for testing

sensors [13] or control strategies [14].

In our work, we aim to study textile materials and their

properties using physical interactions and wrist-mounted

force-torque sensing. Similarly to humans, we aim at using
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Fig. 1: System setup: Two 7 DoF Franka Emika Panda arms

with force-toque sensors on the wrists, twisting and pulling a

textile sample. Microscope images are used to define textile

classes prior to training.

actions such as pulling and twisting, to learn more about the

textile properties, see Fig. 1. The properties are defined using

a textile taxonomy that follows the classification used in the

textile production industry. Textile properties in general, and

thus interaction dynamics, are affected by factors such as

fiber material and production method - the fiber may be raw,

coated or it may be a blend of several materials. Once used to

produce garments or bed-clothing, the properties will change

overtime based on washing, wearing, steaming - the textile

can become harder or softer, less or more elastic, thinner.

The change in properties will also have an impact on the

planning and control strategies used to interact with it - how

we wash, iron and fold them, how we hold and manipulate

garments when dressing somebody, whether we decide to

recycle or reuse old garments.

The focus of this paper is to asses how a dual arm

robotic system can be used to identify textile production

methods through pulling and twisting. We propose to do

so by learning a classifier on a dataset of textile samples

that are annotated by their construction type, determined

by inspecting their microscopic structure. We first outline

a textile classification taxonomy related to both fiber type

and production method, following notation used in textile

industry. We then make a thorough study using a subset of

materials and production techniques to assess the validity

of our approach. We analyse two manipulation strategies as

well as investigate which measurements are most relevant

for classification. We conclude by discussing challenges and

open problems.
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Fig. 2: Textile taxonomy considering yarn/fabric material and production method. Classes considered in this work are

highlighted in red.

II. TEXTILE TAXONOMY

Textile or fabric, is a deformable and flexible material

made out of yarns or threads, which are put together by

a construction or manufacturing process such as weaving,

knitting, crocheting, knotting, tatting, felting, bonding or

braiding. Most of the everyday clothing items we wear are

constructed through weaving or knitting prior to sewing,

although in high fashion other processes are used frequently

too. Yarns and threads are produced by spinning raw fibers

that may have different origin: animal, plant, mineral, syn-

thetic or their blend. We summarize some of these aspects

in Fig. 2, showing also some of the further distinctions in

terms of differences in the manufacturing process.

Woven fabric is usually produced by using two sets of

yarn, while knitted fabric employs a single set. To produce

woven fabric, the yarn is interlaced, as opposed to knitting

where it is interloped. Due to its construction, woven fabric is

often hard and nonelastic, allowing it to hold creases well,

and can be only stretched diagonally if the yarn itself is

not a blend that includes elastic material. It is commonly

used to produce garments such as shirts and jeans. On the

other hand, knitted fabric is soft and can be stretched in all

directions, making it rather wrinkle-resistant. One example

of its frequent use is for t-shirts. One important aspect is

that it usually does not stretch equally in all directions -

for example, a t-shirt will stretch more horizontally than

vertically to more naturally follow body shape. A more

complete account of the properties of fabric can be found

in [15].

The above is of importance for various robotics applica-

tions that consider active interaction with the textile. For

assisted dressing applications, it is important for the robotic

system to generate relevant control strategies when pulling up

pants, helping with the sleeves or pulling down the t-shirt:

hard textile may require completely different manipulation

strategies and safety considerations than the flexible one.

Most of the clothing items will have a content label attached

to them and may offer information about the type of yarn

used. However, the manufacturing process is never described

on the label, neither is the fact that a clothing item may be a

combination of woven and knitted parts and a combination

of different type of textiles being put together in the sewing

step. For example, both a pair of jeans and a t-shirt may

be made with 100% cotton textile that, in the first case, is

woven and in the second case, knitted. With the proposed

taxonomy and the work in this paper, we report on some

initial insights on how some of the textile properties can be

examined by using force-torque measurements and actions

such as pulling and twisting of the textile samples.

Fig. 3: Textile can look the same given regular camera

(left), but very different on the microscopic level (right). The

different weaving styles (plain weave and satin weave) with

the same material determine the dynamical properties that

are important when manipulating fabric.

Even for humans, the manufacturing method may not be

visible with the naked eye and the label only provides the

yarn material. We use our experience of previously interact-

ing with clothing items to choose appropriate actions when

dressing ourselves or others, washing, ironing, repairing or

sewing. To shed some light on this, we collected microscope

images of our textile samples. While a regular camera image

may not provide enough signal resolution in actual robot

interaction with the textile, the high-resolution microscope

images show different ways of interlacing yarn that has a

huge effect on the elasticity of the textile Fig. 3. Similarly,

garments with different reflection or texture properties may

look rather different under a regular camera but their dynam-

ical properties may be the same if the manufacturing method,

and yarn type, is the same, see Fig. 4.



Fig. 4: Textile can look different on the macro level, but

very similar on the micro level. Left) two different materials

(Wool and Cotton) using a regular camera. The microscope

image (right) reveals that they have the same underlying

construction - knitted jersey.

In this paper, we therefore set out to investigate how force-

torque measurements together with actions such as pulling

and twisting may be used to classify the textiles according to

the proposed taxonomy. We chose pulling and twisting since

these are also the two most common actions humans use for

inspecting textile properties.

III. RELATED WORK

In robotics, textile materials have been considered from

perception, learning, planning and control perspectives. Most

notable applications consider folding, assisted dressing or

material classification [2], [16].

Despite the broad interest in the computer vision com-

munity, most works concentrate on building clothing item

taxonomies [9] rather than identifying material properties.

Problems such as garment motion prediction [17], classifica-

tion [10], dressing 3D simulated humans [18], have also been

addressed. It has also been shown that wrinkle detection may

be helpful for classification [19], [20]. However, with vision

alone it may be difficult to estimate the physical attributes

of textiles [21] although the results in [22] indicate that

vibrations captured in video can be correlated to the stiffness

and density of fabrics.

In robotics, identifying textile properties is important, but

there is no common taxonomy that allows for comparison

and benchmarking of the proposed approaches. Recent work

in [23] proposes a taxonomy of 184 materials including

leather, fur and plant fiber but there is no focus on textile

in particular or the production method. Haptic feedback

has often been used to label various types of materials

[13], [24], [25]. The authors in [26] study compliance and

texture to classify 32 materials including textile. Non-contact

techniques have been used in [27] to distinguish among five

material categories, one of which was textile. Thus, none

of these works focuses specifically on textile material, or

considers fiber and production method in particular. When

considering textile classification, it has been studied from

the fiber material perspective [7], [28] or properties such

as thickness, softness and durability [29]. Material texture

identification has been addressed in [30]–[32], without con-

sidering the difference between fiber material and textile

production method. Given these, we believe that our initial

study and outlined taxonomy provides examples of how

textile classification can be studied in a more structured

manner.

IV. DATA COLLECTION AND DATASET DESIGN

For this initial study, we rely on 40 textile samples. We

cut out pieces 40×17 cm in size. We have 10 polyester and

wool samples, and 20 cotton samples. Polyester samples are

woven and wool samples are knitted. Out of the 20 cotton

samples, 10 are woven and 10 are knitted. We cut the pieces

so that the yarn direction is along the axis of pulling, with the

more elastic direction of stretching being orthogonal to the

axis of pulling as can be seen in Fig. 5. Two Franka Emika

Panda arms are equipped with wrist-mounted Optoforce 6-

axis Force-Torque (FT) sensors and flat 3D-printed grippers.

Fig. 5: Upper) Flat 3D-printed grippers holding wool sample.

The yarn direction coincides with the pulling direction. FT

sensors are mounted on the wrist of the manipulators. Lower)

Schematic example of pull and twist.

For data collection, we aimed to capture the samples’

properties by means of two exploratory procedures [33],

pulling and twisting, and investigate if they are consis-

tently classifiable. To further analyse different data collection

strategies, we decided to let just one arm move (also called

active arm) while the other one is kept still (passive arm),

see Fig. 5. A precise definition of these two manipulation

actions is the following:

• Pull The active arm exerts force on the sample by

steadily moving 2 cm away from the static passive arm,

maintaining a motion direction parallel to the grasping

plane.

• Twist The active arm’s end-effector rotates 90 degrees,

while the arm is pulling to ensure the sample is stretched

adequately to capture its reaction to torsion.



Each textile sample was held with a grasping force of 20N

by both robot arms and pulled and twisted 20 times. As each

sequence of pulling and twisting may result in a slight offset

of the contact point, we re-positioned the sample in the hand

to the original starting points after every five pulls/twists.

Force and torque signals were recorded for a duration of 2s

from each sensor at a frequency of 1kHz. Thus, for each

textile sample, we have 20 examples, one for each arm, with

2×1000×6 raw FT measurements.

A. Dataset design

We first sub-sampled the raw measurements for each FT

dimension. We performed average downsampling to 150

values as a trade-off between noise reduction and information

loss. Given these, we build 6 datasets:

• D twist
active, D

pull
active, D twist

passive, D
pull
passive: 4 datasets correspond-

ing to the two actions for each arm individually.

• D twist and D pull : 2 datasets corresponding to the two

actions and the integrated measurements from the two

arms.

In summary, the datasets was labelled to represent the

samples of the taxonomy in Fig. 2 highlighted in red.

Therefore, by considering the ”Production Method” branch

we obtained 2 classes: woven and knitted, while on the

”Yarn/Fiber Material” branch, we obtained 3 classes: wool,

polyester and cotton.

V. DATA VISUALIZATION AND DATASET INSIGHTS

We first inspect the generated datasets to assess to what

extent the collected data, labelled according to the proposed

taxonomy, are representative for classification. To this end,

we employ t-SNE [34] and project the datasets into a two-

dimensional space. More specifically, we want to answer the

following questions:

• Can the generated data and employed actions show a

clear distinction between woven and knitted textiles?

• Is there a difference between pulling and twisting, in

terms of how informative they are, for the woven vs

knitted classification?

• What is the effect of fiber type on the classifica-

tion performance and can we distinguish not only the

production method, but also the fiber type given our

datasets?

A. Insight 1: Production Method

First, we visually inspect if the datasets are representative

of the production method. Fig.6 shows the distribution of the

data projected in 2D when only cotton is considered, where

the left side of the figures shows how the data is separated by

the production method, woven (also called Cotton-Twill) and

knitted (also called Cotton-Jersey). The top row corresponds

to the active arm and the bottom row to the passive arm

during a pulling trial. From the figure we observe that by

considering the actual production method we obtain clearly

structured groups of samples that would have been otherwise

masked by categorizing them as the same material.

Fig. 6: Effect of splitting construction method on Cotton

samples. t-SNE plot of measurements obtained from the

active (top row) and passive (bottom row) arms during

pulling Cotton samples.

B. Insight 2: Pulling vs Twisting

Second, we assess whether there is an advantage in using

both pulling and twisting. As a first step, Fig. 7 shows that

measurements for the two actions exhibit different behavior.

For example, the force measurements during pulling exhibit

more variety than they do for twisting, indicating that they

may carry more information for the different classes.

To further examine how important the different measure-

ments are and how they can affect classification, we train

a simple SVM [35] classifier to predict the sample’s class,

while trained on individual signals (Fx, Fy, Fz, Tx, Ty, Tz).

The classifier has a linear kernel and it is implemented with

Scikit-learn [36]. Table I shows the test set accuracy based on

the individual signals for the pull (left) and the twist (right)

strategies of the active arm, when learning on a material-

based dataset and a construction-based ones.

Signal
Pull Twist

Material Construction Material Construction

Fx 30% 82% 45% 57%

Fy 32% 63% 38% 52%

Fz 70% 100% 53% 73%

Tx 42% 75% 38% 63%

Ty 44% 83% 38% 63%

Tz 40% 53% 45% 59%

All 80% 100% 70% 87%

TABLE I: SVM test set performance based on the individual

signals for a dataset with 3 classes for material distinction

and 2 classes for the production methods.

From the SVM results, we observe that for the material-

based classification, the accuracy scores for the two actions



Fig. 7: Pull vs twist measurements on the active arm.

are comparable and rather low. However, when considering

the proposed labels, the accuracy increases and in almost all

signal cases, pulling outperforms twisting.

These results reinforce that following construction-based

taxonomy is advantageous as well as the notion that the

sensory feedback varies a lot depending on how textile is

manipulated. It is therefore of fundamental importance to

understand how to choose the proper exploration strategy.

Moreover, as mentioned in Section II, the way in which

textile threads are interlocked leads to different elastic prop-

erties. Knitted textiles, for example, can be stretched length-

wise or along the horizontal direction. Woven textiles instead,

are usually not stretchable, apart from a bias direction that for

example, for denim is the diagonal one. All these concepts

play an important role in classification and highly increase

the complexity of the task.

C. Insight 3: Fiber Material vs Production Method

Lastly, we assess to what extent the fiber type can be

identified in addition to the production method. An example

of this can be seen in Fig. 8 for dataset D twist
passive that depicts

the difference between samples categorized using just their

production method (knitted or woven) and when they are

labelled based on the material with the further distinction

of the Cotton class, which is split into Cotton-Twill (woven)

and Cotton-Jersey (knitted) to reflect its production methods.

We can see that Cotton-Twill visually belongs to a separate

cluster as observed in section V-A. It can be also noticed that

some of the Cotton-Twill samples are closer to Polyester

as to Wool, while Cotton-Jersey is closer to Wool than to

Polyester.

Fig. 8: Twist on the passive arm: visualization with respect

to left) production method, right) fiber material.

We can also observe the effect of the proposed taxonomy

on the individual signal level, by considering the dataset

D
pull
active for example. Fig. 9 depicts how the split of Cotton

by construction method highlights the difference between the

mean force used for Cotton-Twill and Cotton-Jersey at the

end of the pulling action, further showing the necessity of

splitting the Cotton class. Moreover, besides the detectable

distinction among Polyester, Wool, Cotton-Twill and Cotton-

Jersey signals, woven materials keep being the ones with

higher mean force while knitted ones are in general less

tension-resistant, reflecting the behaviour of the construction

methods.

VI. CLASSIFICATION AND INTERPRETABILITY

The next step is to assess the classification performance

using a more complex architecture, like a CNN model. The

input of the network are vectors of the six concatenated FT

measurements, the network consists of four 2D convolutional

layers and its activations are rectified linear units (ReLU).

Furthermore, we adopt rectangular kernels of size 5 × 1

which convolve across measurements of the same signal as

done in [37]. The output sizes of the convolutional layers are

respectively 24,12,8 and 4.

The features learned from the last convolutional layer

are flattened and fed to a fully connected layer with 48

hidden neurons. The outputs of this block are the predicted

class probabilities. We also consider the case of the joined

measurements for the active and passive arm, using the same

architecture but adjusting the size of the fully-connected

layer to accommodate the 150×12 signal.



Fig. 9: Mean and standard deviation of the measurements

sensed by the active arm while pulling.

Input Dataset Materials Construction

D
pull
active 87.5% 100%

D
pull
passive 85.8% 96.7%

D twist
active 76.7% 95.0%

D twist
passive 78.3% 89.2%

D pull 95.0% 100%

D twist 79.0% 91.7%

TABLE II: Test accuracy with a CNN model for all the dif-

ferent datasets when following the material-based labelling

and the proposed, construction-based one.

We partitioned each dataset into 90/10 train/test splits.

Table II summarizes the classification results. Firstly, we

observe that the construction-based labeling outperforms

the material-based one for any dataset or action. More

specifically, using our taxonomy both actions provide enough

information for accurate predictions. However, twisting is

consistently less accurate than pulling for all labeling and

datasets considered.

These observations are validated in the case of the joined

datasets with D pull achieving excellent performance in dis-

tinguishing the construction method of the textile, leading to

the conclusion that pulling is a better option for classification.

A. Interpretability and measurement assessment

To further examine the effect of the different measure-

ments for classification, we interpret the results from the

CNN model through GradCAM [38]. GradCAM is an in-

terpretability technique that produces visual explanations in

the form of heatmaps that portray which parts of the input

contribute the most to the predicted label. We follow the

same methodology as in [39] to produce and inspect the

contribution of each feature in samples from datasets D pull

and D
pull
active of Table II.

An example of the heatmaps can be seen in Fig. 10 for

two correctly classified samples of woven cotton and knitted

cotton from the dataset D pull . Every row corresponds to a

different measurement channel and its color is defined by

how important it is for the prediction. The importance is

scaled between 0 and 1 and follows the colormap on the right

of the images. Fig. 10 shows that for both cotton instances,

the network is focusing on the same features between the

passive and the active arm. Concretely, for woven cotton,

the forces on both axes Z are the most important features,

followed by the torques T
p

x ,T a
x and some parts of T

p
y ,T a

y .

However, for knitted cotton, the network utilized all the force

measurements for both arms and the torque on axis Z for the

active arm. These results indicate that even when utilizing

the material based-labeling, the CNN network focuses on

different patterns when classifying samples of the same

material but different construction methods.

Finally, we inspect two classification results from dataset

D
pull
active when it is labelled according to the proposed taxon-

omy. The left heatmap corresponds to a correct classification

of a woven sample and the right heatmap on the correct

classification of a knitted one. The important features agree

with the intuition gained from Table I as the decisions are

heavily based on the ones highlighted also by the SVM,

namely forces Fz and torques Tx,Ty.

We note that the visualization shows only where the

neurons of the network are most active for single examples.

It is possible for a network to construct multiple patterns to

classify the same class, making generalisation difficult. We

can however, observe that certain measurements are more

important for classification than others, which is a valuable

insight when designing future active exploration strategies.

VII. DISCUSSION AND CONCLUSION

In this work, we outlined a textile taxonomy and showed

our initial results on textile sample classification using



Fig. 10: Heatmaps of feature importance for the classification

using dataset D pull . The intensity of each row (with red being

the most important) denotes what the network focuses on to

classify the sample.

Fig. 11: Heatmaps for the dataset D
pull
active: activation for left) a

correctly classified Woven sample, right) correctly classified

Knitted sample.

pulling and twisting actions. The focus of the study was to

assess to what extent a taxonomy used in textile industry is

a viable model to structure robotic interaction and provide a

basis for a whole new area of structured studies of this class

of deformable materials.

We provided insights into how a combination of different

actions and FT measurements vary with respect to textile

production method and fiber material. Pulling and twisting,

as inspired by the human interaction with textile, are viable

choices of actions and these provide relevant information

for classification. One interesting question that arises is what

other actions can be potentially employed and to what extent

dexterous hand/finger motion could be exploited in addition

to pulling and twisting. Some previous work demonstrated

the use of specialized fingers and sensors for this purpose

and it is yet to be seen to what extent we can consider such

solutions to become commercial.

Combining multiple actions, as well as passive and active

interaction, is also an interesting aspect to be explored. We

may start with pulling/stretching and based on the first step

classification, subsequent routines may be performed more

suitably for identifying categories of interest, such as for

example fiber material, elasticity, whether the textile is wet

or dry, etc. Here, reinforcement learning may be used to learn

actions that maximize the utility of the sensor readings for

discriminating various textile properties.

We also performed an initial study using visual feedback

under pulling and twisting. However, for the considered

categories, regular cameras do not provide enough resolution

to bring sufficient information on the production method or

the fibre type. One could potentially rely on the reflectance

properties of textile materials, but most of the works in this

area that stem from the computer vision community, are

not applicable in uncontrolled settings that would occur in

real-life applications. One idea that arose when conducting

the study was the fact that creases and wrinkles on the

textile fabric may be a useful feature to exploit for certain

applications. When pulling or stretching the fabric in many

different directions, creases and wrinkles will vary dependent

on the properties of the textile: dense and hard textile creases

differently from soft and thin textile. In such cases, integrat-

ing vision and FT may be useful. Careful consideration on

what visual features are used needs to be taken into account.

For example, using flow-based methods [40] or specified

wrinkle detectors [41] dealing with various texture properties

may be considered.

An additional important aspect to be considered is the

ability to assess how textile properties change over time.

Certain textiles are made to be more durable, fibers are

blended, their use and handling in terms of washing, ironing,

folding, will affect how clothing items deteriorate over time.

In other words, the information of the fiber content usually

available on the label sewn on the clothing item, may be

helpful but it is not fully relevant. For example, a T-shirt

made out of cotton, may be more elastic and thicker when

new, and rather thin and almost non-elastic after many

washings. Thus, its handling in terms of washing and ironing

will be different, as well as one may decide to keep or reuse

a newer one, and recycle a well-used one.

The outlined taxonomy, visualization, CNN classification

and measurement interpretability are important tools that can

provide more insight into the difficulty of the considered

problem. The taxonomy provides a structured approach to

study textile materials and has not been previously consid-

ered in the area of robotics. We also need an approach that

brings the robotics community closer to textile production

industry and this is one way of achieving that. We provided

several examples of how the generated textile material classes

are a viable approach and how these can be studied together

with actions such as pulling and twisting.

Initial classification results using deep neural networks

show a good potential and we will build on these with a

more extensive database of samples, actions and multimodal

sensory feedback. More specifically, we will study a richer

set of pulling actions, with samples of different sizes also

considering standardized textile for the purpose of repeata-

bility, reproducibility and replicability. We believe that this

study is an important step toward a more robust and versatile

textile handling and manipulation for applications such as

various household tasks, assisted dressing and recycling.
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